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5 Risk Characterization

This section summarizes an initial assessment of the potential for plant
breakage and reduced plant growth and vegetative reproduction for scenarios of
commercial traffic increases in UMR Pools 4, 8, and 13.

Physical Damage to Submerged Aquatic Plants

The potential for physical damage to plants was assessed by comparing the
values of current velocity and wave height calculated by the NAVEFF model
with the screening criteria of 0.75 m/s for current velocity and 0.2 m for wave
height for all 108 vessel types in all cells in Pools 4, 8, and 13 that were 1.5 m or
less in depth.  Cell depth is an output of the NAVEFF model and is determined
by the flow conditions and bathymetry specified as input data for each pool.  

The screening calculations were performed for the nine combinations of stage
height and vessel location for each pool (Tables 9-11).  The results demonstrate
the increase in possible combinations of vessel type and cell number with
increasing stage height.  Due to constraints imposed by the bathymetry data on
some of the pool cross sections, it was not possible to run all the vessel types
using the NAVEFF model for all stage heights and sailing lines.  Thus, in several
instances (i.e., Pool 4, low stage; Pool 13, medium stage) the numbers in
columns one and two vary in Tables 9-11.  However, dividing the number of
combinations of cell x vessel in the second column by 108 vessel types
approximates the number of cells of 1.5-m depth for each stage height: 596 for
low stage, 613 for medium, and 204 for high stage.  The corresponding numbers
for Pool 13 are 2,017 for low, 2,088 for medium, and 2,131 for the high stage
height.
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Table 9
Summary of Screening Assessment for Plant Breakage in Pool 41 

Stage/
Sailing Line

Number of
Combinations 
Cells x Vessels

Number in Cells
<1.5 m Deep

Number That
Failed the Screen

Low Stage

 Left 1,193,134 64,012 342 (0.53)

 Center 1,202,082 64,376 188 (0.29)

 Right 1,195,641 64,064 224 (0.35)

Medium Stage

 Left 1,377,865 66,204 596 (0.90)

 Center 1,377,865 66,204 340 (0.51)

 Right 1,377,865 66,204 376 (0.57)

High Stage

 Left 1,440,613 22,032 304 (1.38)

 Center 1,440,613 22,032 128 (0.58)

 Right 1,440,613 22,032 164 (0.74)

1 The number in parentheses is the percentage of cells <1.5 m deep that failed the screen.
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Table 10
Summary of Screening Assessment for Plant Breakage in Pool 81

Stage/
Sailing Line

Number of
Combinations 
Cells x Vessels

Number in Cells
<1.5 m Deep

Number That
Failed the Screen

Low Stage

 Left 1,053,973 278,964 2,412 (0.86)

 Center 1,053,973 278,964 1,500 (0.54)

 Right 1,053,973 278,964 2,046 (0.73)

Medium Stage

 Left 1,070,821 381,024 3,372 (0.88)

 Center 1,070,821 381,024 2,304 (0.60)

 Right 1,070,821 381,024 2,772 (0.73)

High Stage

 Left 1,141,777 309,744 2,352 (0.76)

 Center 1,141,777 309,744 1,338 (0.43)

 Right 1,141,777 309,744 2,304 (0.74)

1 The number in parentheses is the percentage of cells <1.5 m deep that failed the screen
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Table 11
Summary of Screening Assessment for Plant Breakage in Pool 131

Stage/
Sailing Line

Number of
Combinations 
Cells x Vessels

Number in Cells
<1.5 m Deep

Number That
Failed the Screen

Low Stage

 Left 559,873 217,836 872 (0.400)

 Center 559,873 217,836 528 (0.242)

 Right 559,873 217,836 748 (0.343)

Medium Stage

 Left 625,321 225,504 808 (0.358)

 Center 625,321 225,504 536 (0.238)

 Right 609,661 212,328 760 (0.358)

High Stage

 Left 757,837 230,148 980 (0.426)

 Center 757,837 230,148 524 (0.228)

 Right 757,837 230,148 760 (0.330)

1 The number in parentheses is the percentage of cells <1.5 m deep that failed the screen.

Of the possible number of cell x vessel combinations in Pools 4, 8, and 13,
the numbers and percentages of combinations that failed either the current
velocity or the wave height screening criteria were small.  Less than 1.5% of the
1.5-m depth combinations failed the screen (Pool 4, high stage, left sailing line)
for all combinations of stage height, vessel type, and sailing location across the
three pools.  For each pool, the greatest impacts resulted for vessels located at
the left edge of the navigation channel, independent of pool stage height.  In
general, vessels operate in this portion of the navigation channel approximately
5% of the time.  

The specific combinations of vessel type, sailing line, and stage height that
failed the screening process could become the focus of a more detailed assess-
ment.  The cell identification number, the vessel type, and the NAVEFF model
results (current velocity, wave height) for this screening exercise were recorded
and saved as computer files.  Analysis of these screening results indicated that
the criterion that consistently failed the screening was wave height (>95% of all
screening failures).  The screening criterion was a wave height of 0.2 m; of the
thousands of screening failures (Tables 9-11), the wave heights produced by the
NAVEFF model calculations were less than 0.3 m.  Thus, the wave height
screening value was violated usually by small amounts.  In more detailed
assessments, the uncertainties associated with both the NAVEFF model
computations and the screening criterion of 0.2 m should be examined to
determine the probability that physical damage would be expected.
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Decreased Growth and Vegetative Reproduction
of Submerged Aquatic Plants

The impacts of traffic-induced sediment resuspension on plant growth and
reproduction were assessed for one example cell selected from Pool 4
(115L7560), Pool 8 (145L6875 ), and Pool 13 (85L5300).  The Pool 4 example
location is 115 m left of the main sailing line at River Mile 756.0; the Pool 8
location is 145 m left of the sailing line at River Mile 687.5; and the Pool 13 cell
is 85 m left of the sailing line at River Mile 530.0.  Each cell is approximately
0.81 km (i.e., 0.5 mile) in length by 10 m wide and was selected because it was
one that failed the physical screening for one or more vessel types, and the cell
depth was ~1.5 m at high pool stage.  

Light extinction coefficients

Time series of daily suspended sediment concentrations (mg/L) were
constructed for each month in the May through September growing season for
the 1992 baseline and the percentage increase in traffic scenarios.  These
concentrations were used to estimate daily values of light extinction coefficients. 
The suspended sediment concentrations were first converted to estimates of
Secchi depth (m) using the regression equations for Pools 4, 8, and 13 (Table 4). 
The Secchi depths were then transformed to light extinction coefficients using
the Giesen et al. (1990) equation (Figure 3).  The monthly average values of the
extinction coefficients are summarized for the selected cells in Tables 12-14.  

The values estimated for suspended sediments associated with the 1992
baseline traffic data resulted in monthly average extinction coefficients that
ranged from 3.08 to 4.24 m-1 in Pool 4 (2.62 to 3.00 m-1); 2.96 to 4.59 m-1 in
Pool 8 (3.30 to 3.84 m-1), and 2.96 to 3.42 m-1 in Pool 13 (4.23 to 4.58 m-1).  The
values in parentheses for each pool are estimated using the average monthly
ambient suspended sediment concentrations (Table 5).  Differences between the
extinction values based on simulated 1992 traffic (Tables 12-14) and the
coefficients reported in Table 5 result largely from different ambient suspended
sediment concentrations reported for the particular cell within each pool in
comparison to the reported monthly average value.  The greatest difference was
for the selected cell from Pool 13, which had an associated ambient suspended
sediment concentration of 0.2 mg/L compared with values of 46-76 mg/L
reported in Table 5.  
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Table 12
Summary of Pool 4 Monthly Average Light Extinction Coefficients
(m-1) Calculated for Different Traffic Increase Scenarios1

Traffic Scenario

1992 25% 50% 75% 100%

May

Mean 3.08 3.36 3.45 3.51 3.69

% Increase 8.98 11.93 14.03 19.64

June

Mean 4.24 4.29 4.45 4.48 4.59

% Increase 1.40 4.93 5.73 8.39

July

Mean 4.20 4.36 4.55 4.54 4.63

% Increase 3.75 8.37 8.15 10.40

August

Mean 4.04 4.22 4.16 4.34 4.47

% Increase 4.49 3.05 7.56 10.72

September

Mean 3.55 4.11 4.09 4.38 4.26

% Increase 15.76 15.09 23.12 19.86

1  Percentage increases in average extinction coefficients compared to the 1992 reference values
are also presented.
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Table 13
Summary of Pool 8 Monthly Average Light Extinction Coefficients
(m-1) Calculated for Different Traffic Increase Scenarios1

Traffic Scenario

1992 25% 50% 75% 100%

May

Mean 2.96 3.16 3.49 3.59 3.87

% Increase  6.56 17.98 21.39 30.81

June

Mean 4.59 4.78 4.96 5.12 5.36

% Increase 4.03 7.91 11.33 16.62

July

Mean 4.43 4.67 4.79 4.98 5.11

% Increase 5.51 8.30 12.55 15.44

August

Mean 3.71 3.90 4.22 4.48 4.49

% Increase 5.08 13.78 20.82 21.16

September

Mean 3.63 3.93 4.00 4.17 4.38

% Increase 8.26 10.04 14.70 20.72

1 Percentage increases in average extinction coefficients compared to the 1992 reference values
are also presented.
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Table 14
Summary of Pool 13 Monthly Average Light Extinction
Coefficients (m-1) Calculated for Different Traffic Increase
Scenarios1

Traffic Scenario

1992 25% 50% 75% 100%

May

Mean 2.96 3.17 3.23 3.87 3.39

% Increase 6.82 9.00 30.66 14.43

June

Mean 3.31 3.57 3.83 4.08 4.24

% Increase 7.64 15.57 22.85 27.85

July

Mean 3.38 3.59 3.77 4.14 4.28

% Increase 6.07 11.26 22.47 26.58

August

Mean 3.42 3.40 4.02 3.82 4.10

% Increase -0.54 17.60 11.66 19.92

September

Mean 3.14 3.36 3.56 3.76 3.93

% Increase 6.96 13.20 19.77 25.03

1 Percentage increases in average extinction coefficients compared to the 1992 reference values
are also presented.
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The increases in monthly light extinction coefficients across traffic scenarios
demonstrate that a proportional increase in traffic intensity does not translate
simply to the same proportional increase in light extinction.  The light extinction
coefficient is an exponent, so a small increase in it actually means an exponen-
tially greater decrease in light availability.  A 100% increase in traffic intensity
produced, at most, a 28% increase in the average extinction coefficient (i.e., Pool
13, June).  The results also reflect the monthly varying values of baseline traffic
intensity and ambient suspended sediment concentrations.  In Pool 4, the greatest
relative increase in light extinction occurred for the months of May and Septem-
ber.  In Pool 8, the greatest relative increase in light extinction occurred for the
months of May and August.  The greatest percentage increase in light extinction
occurred for the months of June and July in Pool 13; these month-to-month
differences were greater compared to Pools 4 and 8.  

Within each month, the relative increase in light extinction coefficients with
increasing traffic intensity is approximately linear for these pools (Tables 12-
14).  However, the variation introduced by the random selection of interarrival
times and vessel types resulted in extinction values that are not simple multiples
for successive scenarios of percentage increases in navigation traffic.  

The results of increased traffic on suspended sediments produced increases in
light extinction coefficients on the order of 1 to 28%, depending on the combina-
tion of month, pool, and traffic scenario (e.g., Tables 12-14).  However, the
value of the light extinction coefficient is an exponent in the equation which
describes light attenuation within the water column in the plant growth models. 
Therefore, the impacts of these small increases in light extinction coefficients
can be magnified when used in the plant models to examine the implications of
increases in suspended sediments on growth and reproduction for wild celery
(i.e., VALLA) and sago pondweed (i.e., POTAM).  

Plant growth and biomass

The plant growth models for wild celery and sago pondweed were
implemented for the selected locations (GIS cells) in Pools 4, 8, and 13.  The
time series of daily light extinction coefficients developed for each location and
traffic scenario replaced the nominal values for the model days that correspond
to the May through September growing season.  For each representative plant
species, simulations were performed for the four percentage traffic increase
scenarios in addition to the 1992 baseline.  The simulated values of total plant
biomass, plant living biomass, tuber numbers (number/m2), and tuber biomass 
(g dry mass/m2) were summarized for the traffic scenarios.

Figures 23 through 25 illustrate the temporal growth dynamics of wild celery
in Pools 4, 8, and 13 for the baseline and percentage increase traffic scenarios. 
The results of tow-induced increased suspended sediments and corresponding
reductions in light availability have demonstrated impacts on plant growth for
the selected cells in these pools.  The severity of the modeled impacts was
greatest in Pool 13, followed by Pool 4.  Minimal impacts on wild celery were
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Figure 23. The growth (living biomass and total biomass) of wild celery in UMR Pool 4 for the baseline
and percentage increase traffic scenarios.  Climatological data pertaining to St. Paul,
Minnesota, 10-year average (1985-1994) were used, water depth is 1.5 m, and Day 1 =
January 1
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Figure 24. The growth (living biomass and total biomass) of wild celery in UMR Pool 8 for the baseline
and percentage increase traffic scenarios.  Climatological data pertaining to La Crosse,
Wisconsin, 30-year average (1961-1990) were used, water depth is 1.5 m, and Day 1 =
January 1
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Figure 25. The growth (living biomass and total biomass) of wild celery in UMR Pool 13 for the baseline
and percentage increase traffic scenarios.  Climatological data pertaining to Moline, Illinois,
30-year average (1961-1990) were used, water depth is 1.5 m, and Day 1 = January 1

projected in Pool 8.  The traffic-induced sediment resuspension appeared to exert
its main impact during the latter part of the plant growth cycle (e.g., Figure 25).
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The model results for total wild celery plant biomass (living + non-living)
were summarized for the annual sum of daily values, the average daily value,
and the maximum daily value (Table 15).  Total annual plant biomass decreased
by as much as 27% for a 100% traffic increase in Pool 13.  Across the assessed
scenarios, impacts ranged from 12-27% in Pool 13.  Contrastingly, in Pools 4
and 8, the simulated traffic increases had less impact.  Decreases in total plant
biomass values ranged from approximately 1-8% compared to the 1992 baseline
for Pools 4 and 8.  The results indicated that a 25% increase in traffic did not
translate into a corresponding 25% reduction in total biomass.  However, the
incremental decreases in total biomass were approximately linearly related to the
increase in traffic; the incremental percentage decrease in biomass was nearly
constant for each biomass measure with each 25% increase in traffic intensity 
(Table 15).

Table 15
Impacts on Total (Living + Dead) Biomass (g dry mass/m2) of Wild
Celery for the Percentage Increase Traffic Scenarios for the UMR-
IWW System1

Percent Traffic Increase

Pool
Baseline
1992 25 50 75 100

Pool 4

Annual Sum 14,564 14,126 (-3.0) 13,892 (-4.6) 13,706 (-5.9) 13,470 (-7.5)

Mean
Biomass

39.9 38.7 (-3.0) 38.1 (-4.5) 37.6 (-5.8) 36.9 (-7.5)

Maximum
Biomass

111.8 108.2 (-3.2) 106.5  (-4.7) 104.8 (-6.3) 103.1 (-7.8)

Pool 8

Annual Sum 10,208 10,135 (-0.7) 10,039 (-1.7) 9,971 (-2.3) 9,907 (-2.9)

Mean
Biomass

39.4 39.1 (-0.8) 38.8 (-1.5) 38.5 (-2.3) 38.3 (-2.8)

Maximum
Biomass

79.0 78.3 (-0.9) 77.6 (-1.8) 77.0 (-2.5) 76.5 (-3.2)

Pool 13

Annual Sum 17,371 15,228 (-12.3) 14,304 (-17.7) 13,263 (-23.6) 12,944 (-25.5)

Mean
Biomass

47.6 41.7 (-12.3) 39.2 (-17.6) 36.3 (-23.7) 35.5 (-25.4)

Maximum
Biomass

134.9 117.7 (-12.7) 109.8 (-18.6) 101.8 (-24.5) 98.9 (-26.7)

Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.
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Table 16 summarizes the corresponding projected traffic impacts on plant
annual gross production, as well as on the mean and maximum values of daily
plant living biomass for wild celery.  The pattern of traffic impacts on gross
production and living biomass essentially parallels the impacts recorded for total
plant biomass.  Percentage differences compared to the 1992 baseline scenario
are of similar magnitude as the response of total biomass (i.e., Table 15).  Again,
the largest impacts were observed for the cell selected from Pool 13, and growth 
was reduced by ~10 to ~27% across the four increased traffic scenarios. 
Successively lesser impacts resulted for the simulations of traffic increases in
Pools 4 and 8.  Growth reductions were on the order of 0-4% in Pool 8, while
corresponding impacts in Pool 4 ranged from ~3 to ~9% compared to the 1992
baseline simulations.

Table 16
Impacts on Annual Gross Production ( g CO2/m2) and Living
Biomass (g dry mass/m2) of Wild Celery for the Percentage
Increase Traffic Scenarios for the UMR-IWW System1

Percent Traffic Increase

Pool
Baseline
1992 25 50 75 100

Pool 4

Gross
Production

285.6 275.8 (-3.4) 271.3 (-5.0) 265.4 (-7.1) 260.5 (-8.8)

Mean
Biomass

22.7 22.0 (-3.1) 21.7 (-4.4) 21.4 (-5.7) 21.0 (-7.5)

Maximum
Biomass

47.6 46.4 (-2.5) 45.5 (-4.4) 45.4 (-4.6) 44.3 (-6.9)

Pool 8

Gross
Production

199.4 197.5 (-1.0) 195.3 (-2.1) 193.6 (-2.9) 192.0 (-3.7)

Mean
Biomass

16.5 16.3 (-1.2) 16.2 (-1.8) 16.1 (-2.4) 16.0 (-3.0)

Maximum
Biomass

33.5 33.4 (-0.3) 33.1 (-1.2) 32.8 (-2.1) 32.7 (-2.4)

Pool 13

Gross
Production

316.0 278.6 (-11.8) 257.6 (-18.5) 238.2 (-24.6) 230.4 (-27.0)

Mean
Biomass

24.3 21.3 (-12.3) 20.1 (-17.3) 18.6 (-23.4) 18.2 (-25.1)

Maximum
Biomass

49.1 44.2 (-10.0) 41.4 (-15.7) 38.0 (-22.6) 37.6 (-23.4)

1 Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.
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The dynamics of sago pondweed living biomass and total biomass in Pools 4,
8, and 13 for the baseline and percentage increases in traffic are presented in
Figures 26 through 28.  The results indicate minimal impact of traffic on growth
of sago pondweed in Pool 4 (Figure 26) and Pool 8 (Figure 27).  However,
modeled impacts on growth of this species were apparent for Pool 13
(Figure 28).  The daily measures of total biomass (i.e., annual sum, average,
maximum) demonstrated greater baseline production of sago pondweed
compared to wild celery for Pools 4, 8, and 13 (Tables 15 and 17).  As with wild
celery, the largest impacts on sago pondweed from traffic increases were
observed for Pool 13.  However, the impact on sago pondweed growth was
comparatively less than that for wild celery.  The measures of sago pondweed
total biomass were reduced from approximately 4-9% in Pool 13, compared with
the 10-27% reductions simulated for wild celery in Pool 13.  Modeled decreases
in total sago pondweed biomass for Pools 4 and 8 were less than 3% of the 1992
baseline values across all four increases in traffic.

The impacts of simulated traffic increases on gross production and living
biomass for sago pondweed are summarized in Table 18.  The percentage
changes in production and living biomass are approximately the same as those
observed for total biomass.  The greatest impacts occurred for Pool 13, with
correspondingly lesser impacts in Pools 4 and 8, respectively.  For all three
measures summarized in Table 18 for all four traffic increase scenarios, the
modeled impacts were less than 10% of the 1992 baseline values for production
and living biomass.  

Vegetative reproduction

The number and biomass of vegetative reproductive structures produced by
the plant growth models during the growing season provides an indication of the
potential impact of increased traffic on the availability of these structures to
initiate plant growth in the subsequent year.  Continued, significant reductions in
the production of these vegetative reproductive structures might portend the
disappearance of plant beds at affected locations within the UMR.

Under baseline conditions, the average number and biomass of tubers by wild
celery was greatest in Pool 4, followed in order by Pools 8 and 13 (Table 19). 
The modeled impacts of increased traffic on the allocation of photosynthetically
fixed carbon to these reproductive structures were minimal.  The maximum
values of tuber numbers and biomass were unchanged in Pools 8 and 13. 
Average number and biomass increased slightly with increased traffic in Pool 8
(Table 19).  Minimal impacts were simulated in Pools 8 and 13.  The greatest
impacts were in Pool 4, and the projected decreases were less than 3% for
average tuber number and biomass.  Reductions in the maximum values of these
measures ranged from 2-8% across the traffic scenarios in Pool 4.

The modeled impacts of increased commercial traffic on vegetative repro-
ductive structures produced by sago pondweed are summarized in Table 20.  No
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Figure 26. The growth (living biomass and total biomass) of sago pondweed in UMR Pool 4 for the
baseline and percentage increase traffic scenarios.  Climatological data pertaining to
St. Paul, Minnesota, 10-year average (1985-1994) were used, water depth is 1.5 m, and
Day 1 = January 1

changes in average or maximum numbers or biomass resulted for sago
pondweed in Pool 4.  In both Pools 8 and 13, the average number and biomass of 
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Figure 27. The growth (living biomass and total biomass) of sago pondweed in UMR Pool 8 for the
baseline and percentage increase traffic scenarios.  Climatological data pertaining to
La Crosse, Wisconsin, 30-year average (1961-1990) were used, water depth is 1.5 m, and
Day 1 = January 1.
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Figure 28. The growth (living biomass and total biomass) of sago pondweed in UMR Pool 13 for the
baseline and percentage increase traffic scenarios.  Climatological data pertaining to Moline,
Illinois, 30-year average (1961-1990) were used, water depth is 1.5 m, and Day 1 =
January 1
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Table 17
Impacts on Total (Living + Dead) Biomass (g dry mass/m2) of
Sago Pondweed for the Percentage Increase Traffic Scenarios for
the UMR-IWW System1

Percent Traffic Increase

Pool
Baseline
1992 25 50 75 100

Pool 4

Annual Sum 25,905 25,660 (-0.9) 25,524 (-1.5) 25,378 (-2.0) 25,272 (-2.4)

Mean
Biomass

71.0 70.3 (-1.0) 69.9 (-1.5) 69.5 (-2.1) 69.2 (-2.5)

Maximum
Biomass

164.6 162.9 (-1.0) 162.3 (-1.4) 161.0 (-2.2) 160.5 (-2.5)

Pool 8

Annual Sum 23,047 22,992 (-0.2) 22,925 (-0.5) 22,873 (-0.8) 22,820 (-1.0)

Mean
Biomass

81.2 80.9 (-0.4) 80.7 (-0.6) 80.5 (-0.9) 80.4 (-1.0)

Maximum
Biomass

149.8 149.4 (-0.3) 148.9 (-0.6) 148.6 (-0.8) 148.2 (-1.1)

Pool 13

Annual Sum 26,910 25,922 (-3.7) 25,464 (-5.4) 24,804 (-7.8) 24,599 (-8.6)

Mean
Biomass

73.7 71.0 (-3.7) 69.8 (-5.3) 67.9 (-7.9) 67.4 (-8.5)

Maximum
Biomass

170.3 163.9 (-3.8) 160.4 (-5.8) 156.7 (-8.0) 154.9 (-9.0)

1 Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.
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Table 18
Impacts on Annual Gross Production (g CO2/m2) and Living
Biomass (g dry mass/m2) of Sago Pondweed for the Percentage
Increase Traffic Scenarios for the UMR-IWW System1

Percent Traffic Increase

Pool
Baseline

1992 25 50 75 100

Pool 4

Gross
Production

483.8 479.3 (-0.9) 476.8 (-1.4) 473.7 (-2.1) 471.4 (-2.6)

Mean Biomass 26.9 26.7 (-0.7) 26.5 (-1.5) 26.4 (-1.9) 26.3 (-2.2)

Maximum
Biomass

116.2 115.1 (-0.9) 114.2 (-1.7) 114.2 (-1.7) 113.2 (-2.6)

Pool 8

Gross
Production

426.1 425.0 (-0.3) 423.7 (-0.6) 422.7 (-0.8) 421.5 (-1.1)

Mean Biomass 23.8 23.7 (-0.4) 23.7 (-0.4) 23.6 (-0.8) 23.6 (-0.8)

Maximum
Biomass

102.9 102.0 (-0.9) 101.7 (-1.2) 101.4 (-1.5) 101.2 (-1.7)

Pool 13

Gross
Production

518.4 498.5 (-3.8) 488.8 (-5.7) 475.6 (-8.3) 470.7 (-9.2)

Mean Biomass 25.0 24.0 (-4.0) 23.7 (-5.2) 22.9 (-8.4) 22.8 (-8.8)

Maximum
Biomass

111.2 107.0 (-3.8) 106.2 (-4.5) 102.6 (-7.7) 102.4 (-7.9)

1 Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.
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Table 19
Impacts on Vegetative Reproduction of Wild Celery (i.e., Tubers)
for the Percentage Increase Traffic Scenarios for the UMR-IWW
System1

Percent Traffic Increase

Pool
Baseline
1992 25 50 75 100

Pool 4

Average
Number/m2

129.2 128.9 (-0.2) 128.8 (-0.3) 127.7 (-1.2) 125.8 (-2.6)

Maximum
Number/m2

253.5 247.6 (-2.3) 246.6 (-2.7) 241.1 (-4.9) 234.6 (-7.5)

Average
Biomass/m2

11.5 11.5 11.5 11.4 (-0.9) 11.2 (-2.6)

Maximum
Biomass/m2

22.5 22.0 (-2.2) 21.9 (-2.7) 21.5 (-4.4) 21.0 (-6.7)

Pool 8

Average
Number/m2

99.9 99.9 100.1 (+0.2) 100.1 (+0.2) 100.1 (+0.2)

Maximum
Number/m2

233.0 233.0 233.0 233.0 233.0

Average
Biomass/m2

8.97 8.97 8.98 (+0.1) 8.98 (+0.1) 8.98 (+0.1)

Maximum
Biomass/m2

21.0 21.0 21.0 21.0 21.0

Pool 13

Average
Number/m2

97.5 97.5 97.3 (-0.2) 96.9 (-0.6) 96.5 (-1.0)

Maximum
Number/m2

233.0 233.0 233.0 233.0 233.0

Average
Biomass/m2

8.73 8.73 8.72 (-0.1) 8.68 (-0.6) 8.64 (-1.0)

Maximum
Biomass/m2

21.0 21.0 21.0 21.0 21.0

1 Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.
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Table 20
Impacts on Vegetative Reproduction of Sago Pondweed (i.e.,
Tubers) for the Percentage Increase Traffic Scenarios for the
UMR-IWW System1

Percent Traffic Increase

Pool
Baseline
1992 25 50 75 100

Pool 4

Average
Number/m2

112.3 112.3 112.3 112.3 112.3

Maximum
Number/m2

330.1 330.1 330.1 330.1 330.1

Average
Biomass/m2

9.21 9.21 9.21 9.21 9.21

Maximum
Biomass/m2

26.3 26.3 26.3 26.3 26.3

Pool 8

Average
Number/m2

114.2 114.2 114.5 (+0.3) 114.5 (+0.3) 114.5 (+0.3)

Maximum
Number/m2

319.6 319.6 317.1 (-0.8) 317.1 (-0.8) 317.1 (-0.8)

Average
Biomass/m2

9.39 9.39 9.41 (+0.2) 9.41 (+0.2) 9.41 (+0.2)

Maximum
Biomass/m2

25.7 25.7 25.5 (-0.8) 25.5 (-0.8) 25.5 (-0.8)

Pool 13

Average
Number/m2

125.6 126.6 (+0.8) 127.9 (+1.8) 128.8 (+2.5) 129.3 (+2.9)

Maximum
Number/m2

349.6 346.6 (-0.9) 333.9 (-4.5) 330.9 (-5.3) 330.9 (-5.3)

Average
Biomass/m2

10.3 10.3 10.5 (+1.9) 10.5 (+1.9) 10.6 (+2.9)

Maximum
Biomass/m2

27.9 27.8 (-0.4) 26.9 (-3.6) 26.6 (-4.7) 26.3 (-5.7)

1 Values in parentheses are percent changes in production referenced to the 1992 baseline
impacts.

sago pondweed tubers increased slightly with increased traffic.  However, the
corresponding maximum values decreased by as much as 6% for the 100%
traffic increase scenario in Pool 13.
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Uncertainties

There are several sources of bias and imprecision associated with this initial
assessment of commercial traffic on submerged aquatic vegetation in the main
channel and main channel borders of the UMR-IWW System.  These
uncertainties are listed below.

� The physical criteria for plant breakage are based on a small number of
experiments and publications.  The 0.75-m/s current velocity and the 0.2-m
wave heights may be pessimistic.

� The screening for physical damage does not address the potential impacts of
continued and repeated exposure to current velocities and wave heights that
are near, but fail to exceed, the threshold criteria for damage.  It was assumed
that each tow passage represents an independent event in relation to possible
plant breakage.

� The plant growth models for wild celery and sago pondweed were calibrated
using field data from the Netherlands and New York.  It is possible that plant
populations in the UMR-IWW System differ genetically from the calibration
populations and/or possess adaptation mechanisms to other climates
unknown to the authors of this report.  These differences may cause the
UMR-IWW System populations to behave differently than the calibrated
model plant populations.

� Concentrations of potentially different suspended sediments were assumed to
exert the same reduction in light availability.  No distinction was made
between suspended sands versus suspended silts in their characteristic effects
on underwater light fields.  However, the nearshore algorithms for sediment
resuspension were developed for the fine, cohesive sediments that are
characteristic of the nearshore environment in the UMR-IWW System.  

� Risks to plant growth and reproduction were estimated only for one cell of
~1.5-m depth in each of Pools 4, 8, and 13.  Variability in sediment
resuspension by the same vessel configurations for other cells of similar
depth would result in different light extinction coefficients and presumably in
different modeled impacts on plant growth and reproduction.

� It was assumed that the simulated impacts on sago pondweed and wild celery
growth and reproduction are characteristic responses for other submerged
aquatic plant species with similar phenology, biomass, and water column
distribution in the UMR-IWW System. 

� The current versions of the models do not calculate seed production and plant
establishment from seeds.  Recent literature on submerged aquatic plant
population survival under adverse conditions indicates that seeds may play an
important role.
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Future revisions of the described assessment approaches will address these
(and others yet to be identified) sources of bias and imprecision.  Where
possible, the impact of the specific sources of uncertainty on the estimated risks
to plant breakage, growth, and reproduction will be quantified using methods of
sensitivity and uncertainty analysis. 

Probabilistic Risk Assessment

The main purposes of this preliminary assessment of hypothetical traffic
scenarios were to (1) examine the efficacy of the overall approach and determine
the feasibility of ecological risk assessment using the methods and models
described, and if the methodology appears feasible, (2) to estimate the
magnitude of impact of increased traffic on two plant species for selected
locations with Pools 4, 8, and 13.  The risk assessment described in this report
represents a preliminary analysis where risks were characterized as single-value
estimates or percentage changes in plant growth and vegetative reproduction. 
These analyses might be expanded in spatial extent by assessing more cells per
pool to identify specific locations or areas within pools that might be at risk.

The next phase in assessing traffic impacts on submerged aquatic plants will
be to incorporate the current methodology into a framework that characterizes
risk in probabilistic terms.  More detailed, probabilistic assessments will be
performed for selected locations and traffic scenarios identified by the
preliminary analyses.  Parameters used in the calculations (e.g., suspended
sediment concentrations produced by the NAVSED model, light extinction
coefficients based on the regressions equations developed by Soballe, plant
growth model coefficients) that are imprecisely known will be defined as
statistical distributions.  Monte Carlo simulation methods will be used to
propagate these uncertainties through the model calculations to produce
distributions of impacts on growth and vegetative reproduction in relation to
specific traffic scenarios.  These distributions of results can be used to estimate
the probability of different magnitudes of impact in a manner consistent with
probabilistic risk estimation.
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Table B1
The Output Variable Listin g for VALLA (for Wild Celery) and
POTAM (for Sa go Pondweed)

Abbreviation Explanation Dimension

DAVTMP Daily average temperature (C

DAYL Day length h

DDTMP Daily average daytime temperature (C

DTEFF Daily effective temperature (C

DTGA Daily total gross CO  assimilation of the plant gCO .m .d2 2
-2 -1

DVS Development phase of the plant -

FGROS Instantaneous CO  assimilation rate of the plant gCO .m .h2 2
-2 -1

GPHOT Daily total gross CH O assimilation rate of the community gCH O.m .d2 2
-2 -1

IRS Total irradiance just under the water surface J.m .s-2 -1

MAINT Maintenance respiration rate of the plant gCH O.m .d2
-2 -1

NDTUB Dormant tuber number dormant
tubers.m-2

NNTUB New tuber number new tubers.m-2

NTM Tuber density measured (field site) tubers.m-2

NTUBD Dead tuber number dead tubers.m-2

REMOB Remobilization rate of carbohydrates gDW.m .d-2 -1

TEFF Factor accounting for effect of temperature on maintenance -
respiration

TGW Total live plant dry weight (excluding tubers) gDW.m-2

TGWM Total live plant dry weight measured (field site) gDW.m-2

TRANS Translocation rate of carbohydrates gCH O.m .d2
-2 -1

TREMOB Total remobilization gDW.m-2

TW Total live + dead plant dry weight (excluding tubers) gDW.m-2

TWGTUB Total dry weight of germinating tubers gDW.m-2

WTMP Daily water temperature (C

TWLVG Total dry weight of live leaves gDW.m-2

TWNTUB Total dry weight of new tubers gDW.m-2

TWRTD Total dry weight of dead roots gDW.m-2

(Continued)
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Table B1 (Concluded)

Abbreviation Explanation Dimension

TWRTG Total dry weight of live stems gDW.m-2

TWSTD Total dry weight of dead stems gDW.m-2

TWSTG Total dry weight of live stems gDW.m-2

TWTUB Total dry weight of dormant tubers gDW.m-2

TWTUBD Total dry weight of dead tubers gDW.m-2

Table B2 
Relationship Between Development Phase (DVS) of Wild Celery,
Day of Year, and 3 (C Day-degree Sum [Development Rate as a
Function of Temperature (DVRVT) = 0.015; DVRRT = 0.040]

Developmental Phase Description DVS Value Day Number degree  Sum
3 C Day-o

First Julian day number Ú tuber sprouting       0 -> 0.291 0 -> 105 1 -> 270
and initiation elongation 

Tuber sprouting and initial elongation Ú 0.292 -> 0.875 106 -> 180 271 ->1215
leaf expansion 

Leaf expansion Ú floral initiation and 0.876 - >1.000 181 - >191 1216 -> 1415
anthesis

Floral initiation and anthesis--> induction 1.001 -> 2.000 192 -> 227 1416-> 2072
of tuber formation, tuber formation and
senescence 

Tuber formation and senescence Ú 2.001 -> 4.008 228 -> 365 2073 -> 3167
senesced

Senesced 4.008 365 3167

Note: Calibration was on field data from 1978 from Chenango Lake, NY (longitude 75  50’W,o

latitude 42 15‘N; Titus and Stephens 1983) and climatological data were from 1978 fromo 

Binghamton (air temperatures) and Ithaca (irradiance), NY.
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Table B3 
Relationship Between Development Phase (DVS) of Sa go
Pondweed, Day of Year, and 3 (C Day-degree Sum (DVRVT = 0.015;
DVRRT = 0.040)

Developmental Phase Description DVS Value Day Number degree Sum
3 C Day-o

First Julian day number Ú tuber sprouting       0 -> 0.210 0 -> 77 1 -> 193
and initiation elongation 

Tuber sprouting and initial elongation Ú leaf 0.211 -> 0.929 78 -> 187 194 -> 1301
expansion 

Leaf expansion Ú floral initiation and 0.930 - >1.000 188 - >195 1302 -> 1434
anthesis

Floral initiation and anthesis--> induction of 1.001 -> 2.000 196 -> 233 1435 -> 2077
tuber formation, tuber formation and
senescence 

Tuber formation and senescence Ú 2.001 -> 4.033 234 -> 365 2078 -> 3193
senesced

Senesced 4.033 365 3193

Note: Calibration was on field data from 1987 from Zandvoort (longitude 5  38’E, latitude 51  54‘N;o o

Best 1987) and climatological data were from 1987 from De Bilt, The Netherlands.
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Table B4 
Parameter Values for VALLA (Values Listed Are Those Used for
Calibration, and Ran ges Are in Parentheses)

Parameter Abbreviation Value Reference

Morphology, Development and Phenological Cycle

First Julian day
number DAYEM 1

Base temperature for
juvenile plant growth TBASE 3 C calibratedo

Development rate as
function of calibrated
temperature

DVRVT* 0.015
DVRRT 0.040

Fraction of total dry
matter increase FLVT 0.718 1, 2
allocated to leaves

Fraction of total dry
matter increase FSTT 0.159 1, 2
allocated to stems

Fraction of total dry
matter increase FRTT 0.123 1, 2
allocated to roots

Plant density NPL 30. m 1-2

Wintering and Sprouting of the Tubers

Dormant tuber density NDTUB 233. m 3 (4)-2 

Initial dry weight of a 0.090 g DW. tuber
tuber (0.002 - 0.120)INTUB 3, 4

-1

Relative death rate of
tubers (on number RDTU 5
basis)

0.018 d-1 

(0.015 - 0.021)

Growth of the Sprouts to the Water Surface

Relation coefficient
tuber weight-stem RCSHST 12 m. g DW 6, 7
length

-1

Relative conversion
rate of tuber into plant ROC 6
material

0.0576 g CH O.2

g DW  d-1 -1

Critical shoot weight
per depth layer CRIFAC 0.1 m plant layer 3, 4

0.0091 g DW. 
-1

(0.0091 - 0.041)

Survival period for
sprouts with negative SURPER 23 d 8,9
net photosynthesis

(Continued)



B6
Appendix B   Plant Growth Model Parameters

Table B4 (Continued)

Parameter Abbreviation Value Reference

Light, Photosynthesis, Maintenance, Growth and Assimilate Partitioning

Potential CO2

assimilation rate at 0.0165 g CO .
light saturation for g DW  h
shoot tips

AMX 102
-1 -1

Conversion factor for
translocated dry CVT 1.05 11
matter into CH O2

Water depth DEPTH 1 m user def.

Initial light use
efficiency for shoot EE 0.000011 g CO   J 11
tips

2
-1

Reduction factor to
relate AMX to water REDAM 1
pH

Thickness per plant
layer TL 0.1 m 12

Daytime temperature
effect on AMX as AMTMPT* 0 -1 10
function of DVS

Reflection coefficient
of irradiance at water RC 0.06 13
surface

Plant species specific
light extinction K 0.0235 m  g DW 10
coefficient

2 -1

Water type specific
light extinction L 0.43 - 0.80 m 1
coefficient

-1

Reduction factor for
AMX to account for
senescence plant REDF 1.0 user def.
parts over vertical
vegetation axis

Dry matter allocation
to each plant layer DMPC* 0-1 10

Daily water
temperature (field WTMPT -, C user def.
site)

o

Lag period chosen to
relate water temp. to
air temp., in case DELAY 1 d user def.
water temp. has not
been measured

Total live dry weight
measured (field site) TGWMT -, g DM m user def.-2

(Continued)
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Table B4 (Concluded)

Parameter Abbreviation Value Reference

Induction and Formation of Tubers

Translocation (part of
net photosynthetic RTR 0.247 5
rate)

Critical tuber weight TWCTUB 14.85 g DW m 1, 3, 5 -2

Tuber number
concurrently initiated NINTUB 4, 1
per plant

5.5 plant-1

(0.002 - 15)

Tuber density
measured (field site) NTMT 55-233 .m 4-2

Senescence

Relative death rate of
leaves (on DW basis; RDRT 0.021 d 1
Q10 =2)

-1

Relative death rate of
stems and roots (on RDST 0.021 d 1
DW basis; Q10=2)

-1

Harvesting

Harvesting HAR 0 (0 or 1) user def.

Harvesting day
number HARDAY 304 (1 - 365) user def.

Harvesting depth
(measured from water HARDEP 0.1m<DEPTH user def.
surface; 1-5 m)

1. Titus & Stephens 1983;  2. Haller 1974; 3. Korschgen & Green 1988; 4. Korschgen et al. 1997; 
5. Donnermeyer & Smart 1985; 6. Bowes et al. 1977; 7. Van der Zweerde 1981;  8. Titus & Adams
1979b; 9. Best 1987; 10. Titus & Adams 1979a; 11. Penning de Vries & Van Laar 1982a, 1982b;
12. Titus et al. 1975; 13. Golterman 1975. 
* Calibration function.
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Table B5 
Parameter Values for POTAM (Values Listed Are Those Used for
Calibration, and Ran ges Are in Parentheses)

Parameter Abbreviation Value Reference

Morphology, Development and Phenological Cycle

First Julian day
number DAYEM 1

Base temperature for
juvenile plant growth TBASE 3 C calibratedo

Development rate as
function of calibrated
temperature

DVRVT* 0.015
DVRRT 0.040

Fraction of total dry
matter increase FLVT 0.731 1
allocated to leaves

Fraction of total dry
matter increase FSTT 0.183 1
allocated to stems

Fraction of total dry
matter increase FRTT 0.086 1
allocated to roots

Plant Density

Plant density NPL 30. m 2-2

Wintering and Sprouting of the Tubers

Dormant tuber density NDTUB 240. m 1, 2-2

Initial dry weight of a 0.083 g DW. tuber
tuber (0.022 - 0.155)INTUB 1 (3, 4)

-1

Relative death rate of
tubers (on number RDTU 0.026 d 3
basis)

-1

Growth of the Sprouts to the Water Surface

Relation coefficient
tuber weight-stem RCSHST 12 m. g DW 5, 6
length

-1

Relative conversion
rate of tuber into plant ROC 5
material

0.0576 g CH O.2

g DW  d-1 -1

Critical shoot weight 0.0076 g DW. 
per depth layer 0.1 m plant layerCRIFAC 1, 5-1

Survival period for
sprouts with negative SURPER 27 d 1
net photosynthesis

(Continued)
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Table B5 (Continued)

Parameter Abbreviation Value Reference

Light, Photosynthesis, Maintenance, Growth and Assimilate Partitioning

Potential CO2

assimilation rate at 0.019 g CO .
light saturation for g DW  h
shoot tips

AMX 72
-1 -1

Conversion factor for
translocated dry CVT 1.05 8
matter into CH O2

Water depth DEPTH 1.3 m user def.

Initial light use
efficiency for shoot EE 0.000011 g CO   J 8
tips

2
-1

Reduction factor to
relate AMX to water REDAM 1 1
pH

Thickness per plant
layer TL 0.1 m 9

Daytime temperature
effect on AMX as AMTMPT* 0-1 1
function of DVS

Reflection coefficient
irradiance at water RC 0.06 10
surface

Plant species specific
light extinction K 0.095m  g DW 1
coefficient

2 -1

Water type specific
light extinction L 1.09 m 1
coefficient

-1

Reduction factor for
AMX  to account for
senescence plant REDFT 1.0 user def.
parts over vertical
vegetation axis
Dry matter allocation
to each plant layer DMPC* 0 -1 1

Daily water
temperature (field WTMPT -, C user def.
site)

o

Total live dry weight
measured (field site) TGWMT -, g DM m user def.-2

Induction and Formation of Tubers

Translocation (part of
net photosynthetic RTR 0.19 1, 11
rate)

Critical tuber weight TWCTUB 7.92 g DW m 1,2,3,4,5-2

Tuber number
concurrently initiated NINTUB 8 plant (7-12) 1 (4, 5)
per plant

-1 

(Continued)
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Table B5 (Concluded)

Parameter Abbreviation Value Reference

Induction and Formation of Tubers

Tuber density
measured (field site) NTMT 400 -440 .m 3-2

Senescence

Relative death rate of
leaves (on DW basis; RDRT 0.047 d 1
Q10 =2)

-1

Relative death rate of
stems and roots (on RDST 0.047 d 1
DW basis; Q10 =2)

-1

Harvesting

Harvesting HAR 0 (0 or 1) user def.

Harvesting day
number HARDAY 304 (1 - 365) user def.

Harvesting depth
(measured from water HARDEP 0.1m<DEPTH user def.
surface; 1-5 m)

1. Best 1987; 2. Sher Kaul et al. 1995; 3. Van Wijk 1989; 4. Spencer & Anderson 1987; 5. Bowes
et al. 1977; 6. Van der Zweerde 1981; 7. Van der Bijl et al. 1989; 8. Penning de Vries & Van Laar
1982a, 1982b; 9. Titus et al. 1975; 10. Golterman 1975;11. Wetzel & Neckles 1986. 
* Calibration function.
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This study pres ents an ini tial as sess ment of the po ten tial eco log i cal risks by com mer cial nav i ga tion traf fic on
sub merged aquatic plants that grow in the main chan nel and the chan nel bor ders of the Up per Mis sis sippi
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i ments might di min ish avail able un der wa ter light enough to im pair pho to syn the sis, growth, and veg e ta tive re pro duc -
tion of sub merged aquatic plants.  This part of the as sess ment is based on re sults of sim u la tion mod els on growth of
sub merged aquatic plants.  The spe cies se lected to rep re sent con trast ing char ac ter is tic life forms of the sub merged
aquatic veg e ta tion in the UMR-IWW are Amer i can wild cel ery, a noncanopy for mer, and sago pond weed, a can opy
for mer.
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The risk as sess ment meth od ol ogy de scribed in this re port is be ing de vel oped to as sess the po ten tial eco log i cal
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lockage re cords.
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1.5 m can be ex pected in less that 1.5% of the pos si ble com bi na tions of ves sel type, lo ca tion in re la tion to sail ing
line, and pool stage height.  More than 95% of the im pacts most likely stem from sec ond ary wave heights ex ceed ing 
the 0.2-m cri te rion.  The as sess ment also in di cates that across the sce nar ios the de creases in wild cel ery peak bio -
mass are ex pected to be high est in UMR-Pool 13 (up to 12%) and lower in the Pools 4 and 8 (1-4%).  The ex pected
im pacts on the av er age tu ber (veg e ta tive propagule) bio mass are low, i.e. a de crease of max i mally 3%.  Ex pected
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izes risk in proba bil is tic terms in a fol low ing phase.
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